Download An Introduction to Data Analysis Ebook, Epub, Textbook, quickly and easily or read onlineAn Introduction to Data Analysis full books anytime and anywhere. Click GET BOOK button and get unlimited access by create free account.

Title An Introduction to Data Analysis
Author Tiffany Bergin
Publisher SAGE Publications Limited
Release 2018-12-10
Category Social Science
Total Pages 296
ISBN 9781446295151
Language English, Spanish, and French
GET BOOK

Book Summary:

Covering the general process of data analysis to finding, collecting, organizing, and presenting data, this book offers a complete introduction to the fundamentals of data analysis. Using real-world case studies as illustrations, it helps readers understand theories behind and develop techniques for conducting quantitative, qualitative, and mixed methods data analysis. With an easy-to-follow organization and clear, jargon-free language, it helps readers not only become proficient data analysts, but also develop the critical thinking skills necessary to assess analyses presented by others in both academic research and the popular media. It includes advice on: - Data analysis frameworks - Validity and credibility of data - Sampling techniques - Data management - The big data phenomenon - Data visualisation - Effective data communication Whether you are new to data analysis or looking for a quick-reference guide to key principles of the process, this book will help you uncover nuances, complexities, patterns, and relationships among all types of data.

An Introduction to Data Analysis in R by Alfonso Zamora Saiz

Title An Introduction to Data Analysis in R
Author Alfonso Zamora Saiz
Publisher Springer
Release 2020-09-24
Category Computers
Total Pages 276
ISBN 9783030489960
Language English, Spanish, and French
GET BOOK

Book Summary:

This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.

Title Introduction to Statistics and Data Analysis
Author Christian Heumann
Publisher Springer
Release 2017-01-26
Category Mathematics
Total Pages 456
ISBN 3319461621
Language English, Spanish, and French
GET BOOK

Book Summary:

This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.

Title An Introduction to Data Analysis using Aggregation Functions in R
Author Simon James
Publisher Springer
Release 2016-11-07
Category Computers
Total Pages 199
ISBN 331946762X
Language English, Spanish, and French
GET BOOK

Book Summary:

This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.

Statistics for Data Scientists by Maurits Kaptein

Title Statistics for Data Scientists
Author Maurits Kaptein
Publisher Springer
Release 2019-12-31
Category Computers
Total Pages
ISBN 9783030105303
Language English, Spanish, and French
GET BOOK

Book Summary:

This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.

Title An Introduction to Statistical Genetic Data Analysis
Author Melinda C. Mills
Publisher MIT Press
Release 2020-02-18
Category Science
Total Pages 432
ISBN 0262538385
Language English, Spanish, and French
GET BOOK

Book Summary:

A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.

Title An Introduction to Statistical Methods and Data Analysis
Author R. Lyman Ott
Publisher Cengage Learning
Release 2008-12-30
Category Mathematics
Total Pages 1296
ISBN 9780495017585
Language English, Spanish, and French
GET BOOK

Book Summary:

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Sixth Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and in news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Title Conversational Statistics with IDA
Author Harry V. Roberts
Publisher
Release 1982
Category Interactive computer systems
Total Pages 648
ISBN
Language English, Spanish, and French
GET BOOK

Book Summary:

Title An Introduction to Statistical Methods and Data Analysis
Author R. Lyman Ott
Publisher Cengage Learning
Release 2015-05-28
Category Mathematics
Total Pages 1296
ISBN 1305465520
Language English, Spanish, and French
GET BOOK

Book Summary:

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Data Analysis and Data Mining by Adelchi Azzalini

Title Data Analysis and Data Mining
Author Adelchi Azzalini
Publisher Oxford University Press
Release 2012-04-23
Category Business & Economics
Total Pages 288
ISBN 0199942714
Language English, Spanish, and French
GET BOOK

Book Summary:

An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.

LEAVE A COMMENT