Download Artificial Intelligence with Python Ebook, Epub, Textbook, quickly and easily or read onlineArtificial Intelligence with Python full books anytime and anywhere. Click GET BOOK button and get unlimited access by create free account.

Title Artificial Intelligence with Python
Author Prateek Joshi
Publisher
Release 2017-04-28
Category
Total Pages 521
ISBN 9781786464392
Language English, Spanish, and French
GET BOOK

Book Summary:

Build real-world AI applications with Python to intelligently interact with your surroundingsAbout This Book* Step into the amazing world of intelligent apps using this comprehensive guide* Enter the world of AI, explore it, and become independent to create your own AI apps* Work through simple yet insightful examples that will get you up and running with artificial intelligence in no timeWho This Book Is ForThis book is for Python developers who want to build real-world AI applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to implement AI techniques in their existing technology stacks.What You Will Learn* Find out how to use different classification and regression techniques* Understand the concept of clustering and how to use it to automatically segment data* See how to build an intelligent recommender system* Understand logic programming and how to use it* Develop automatic speech recognition systems* Understand the basics of heuristic search and genetic programming* Develop an understanding of reinforcement learning* Discover how to build AI applications centered on images, text, and time series data* Understand how to use deep learning algorithms and build applications based on itIn DetailAI is becoming increasingly relevant in the modern world where the ecosystem is driven by technology and data. AI is used extensively across many fields such as robotics, computer vision, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various AI algorithms that can be used to build various applications.During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of the AI concepts, you will learn how to develop the various building blocks of AI using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application based on images, text, stock market, or some other form of data, this exciting book on AI will definitely guide you all the way!

Artificial Intelligence with Python by Alberto Artasanchez

Title Artificial Intelligence with Python
Author Alberto Artasanchez
Publisher Packt Publishing Ltd
Release 2020-01-31
Category Computers
Total Pages 618
ISBN 1839216077
Language English, Spanish, and French
GET BOOK

Book Summary:

New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key Features Completely updated and revised to Python 3.x New chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineering Learn more about deep learning algorithms, machine learning data pipelines, and chatbots Book Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learn Understand what artificial intelligence, machine learning, and data science are Explore the most common artificial intelligence use cases Learn how to build a machine learning pipeline Assimilate the basics of feature selection and feature engineering Identify the differences between supervised and unsupervised learning Discover the most recent advances and tools offered for AI development in the cloud Develop automatic speech recognition systems and chatbots Apply AI algorithms to time series data Who this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.

Title Python Artificial Intelligence Projects for Beginners
Author Dr. Joshua Eckroth
Publisher Packt Publishing Ltd
Release 2018-07-31
Category Computers
Total Pages 162
ISBN 1789538246
Language English, Spanish, and French
GET BOOK

Book Summary:

Build smart applications by implementing real-world artificial intelligence projects Key Features Explore a variety of AI projects with Python Get well-versed with different types of neural networks and popular deep learning algorithms Leverage popular Python deep learning libraries for your AI projects Book Description Artificial Intelligence (AI) is the newest technology that’s being employed among varied businesses, industries, and sectors. Python Artificial Intelligence Projects for Beginners demonstrates AI projects in Python, covering modern techniques that make up the world of Artificial Intelligence. This book begins with helping you to build your first prediction model using the popular Python library, scikit-learn. You will understand how to build a classifier using an effective machine learning technique, random forest, and decision trees. With exciting projects on predicting bird species, analyzing student performance data, song genre identification, and spam detection, you will learn the fundamentals and various algorithms and techniques that foster the development of these smart applications. In the concluding chapters, you will also understand deep learning and neural network mechanisms through these projects with the help of the Keras library. By the end of this book, you will be confident in building your own AI projects with Python and be ready to take on more advanced projects as you progress What you will learn Build a prediction model using decision trees and random forest Use neural networks, decision trees, and random forests for classification Detect YouTube comment spam with a bag-of-words and random forests Identify handwritten mathematical symbols with convolutional neural networks Revise the bird species identifier to use images Learn to detect positive and negative sentiment in user reviews Who this book is for Python Artificial Intelligence Projects for Beginners is for Python developers who want to take their first step into the world of Artificial Intelligence using easy-to-follow projects. Basic working knowledge of Python programming is expected so that you’re able to play around with code

Title Python Advanced Guide to Artificial Intelligence
Author Giuseppe Bonaccorso
Publisher Packt Publishing Ltd
Release 2018-12-21
Category Computers
Total Pages 764
ISBN 1789951720
Language English, Spanish, and French
GET BOOK

Book Summary:

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

Artificial Intelligence Python by Anthony Williams

Title Artificial Intelligence Python
Author Anthony Williams
Publisher Createspace Independent Publishing Platform
Release 2017-09-17
Category
Total Pages 84
ISBN 9781976456695
Language English, Spanish, and French
GET BOOK

Book Summary:

Artificial Intelligence With Python It is more than apparent that artificial intelligence techniques and practices will navigate the changes in the near future and simply shape the world. It is fair to say that AP is leading approach when it comes to the various scientific fields as well as various industries and today, it is almost impossible the world without advancements in the artificial intelligence field. Experts and scientists both agree that artificial intelligence is the field which will most certainly shape our economic future, automotive industry, health care, cybersecurity as well as cybercrime. Over the coming decades, AI will greatly impact every aspect of our lives including our work, careers, education, care for elderly and much more. Eventually, it will alter the world completely, as machines will pursue complex goals independently of their creators. AI tools have become mainstream tools when it comes to the various industries and science fields since these tools greatly reduce costs, increase profits and even save lives. If you understand the basic concept behind different AI techniques and approaches, you will be able to greatly benefit from it in various aspects. In order to maximise the benefits of AI advancements, you have to be ready to embark on different challenges. However, with this book, you will be able to overcome challenges and the reward is a success. What you will learn in this book: Different artificial intelligence approaches and goals How to define AI system Basic AI techniques Reinforcement learning How to build a recommender system Genetic and logic programming And much, much more... Get this book NOW and learn more about Artificial Intelligence With Python!

Title AI With Python For Beginners
Author Jim Smith
Publisher
Release 2019-07-30
Category
Total Pages 320
ISBN 9781086337686
Language English, Spanish, and French
GET BOOK

Book Summary:

AI With PythonSince the invention of computers or machines, their capability to perform various tasks has experienced an exponential growth. Humans have developed the power of computer systems in terms of their diverse working domains, their increasing speed, and reducing size with respect to time.A branch of Computer Science named Artificial Intelligence pursues creating the computers or machines as intelligent as human beings.Artificial intelligence's progress is staggering. Efforts to advance AI concepts over the past 20 years have resulted in some truly amazing innovations. Big data, medical research, and autonomous vehicles are just some of the incredible applications emerging from AI development.This book covers the basic concepts of various fields of artificial intelligence like Artificial Neural Networks, Natural Language Processing, Machine Learning, Deep Learning, Genetic algorithms etc., and its implementation in Python.What You Will Learn: -Introduction-Machine Learning-Data Preparations-Supervised Learning-Logic Programming-Clustering-Natural Language Processing-Time Series Data-Speech Recognition-Heuristic Search-Gaming-Much, Much More!

Title Artificial Intelligence with Python
Author Prateek Joshi
Publisher Packt Publishing Ltd
Release 2017-01-27
Category Computers
Total Pages 446
ISBN 1786469677
Language English, Spanish, and French
GET BOOK

Book Summary:

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Intelligent Projects Using Python by Santanu Pattanayak

Title Intelligent Projects Using Python
Author Santanu Pattanayak
Publisher Packt Publishing Ltd
Release 2019-01-31
Category Computers
Total Pages 342
ISBN 1788994868
Language English, Spanish, and French
GET BOOK

Book Summary:

Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key Features A go-to guide to help you master AI algorithms and concepts 8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillance Use TensorFlow, Keras, and other Python libraries to implement smart AI applications Book Description This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learn Build an intelligent machine translation system using seq-2-seq neural translation machines Create AI applications using GAN and deploy smart mobile apps using TensorFlow Translate videos into text using CNN and RNN Implement smart AI Chatbots, and integrate and extend them in several domains Create smart reinforcement, learning-based applications using Q-Learning Break and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is for This book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book

Title Introduction to Machine Learning with Python
Author William Gray
Publisher Independently Published
Release 2019-05-04
Category
Total Pages 276
ISBN 9781096755364
Language English, Spanish, and French
GET BOOK

Book Summary:

What exactly is machine learning and why is it so valuable in the online business ? Are you thinking of learning Python machine learning ?This book teach well you the practical ways to do it ! ★★★ Buy the Paperback version and get the Kindle Book versions for FREE ★★★ Machine Learning is a branch of AI that applied algorithms to learn from data and create predictions - this is important in predicting the world around us. Python is a popular and open-source programming language. In addition, it is one of the most applied languages in artificial intelligence and other scientific fields. Today, it is a top skill in high demand in the job market. Machine learning has become an integral part of many commercial applications and research projects. Using Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. Inside Introduction to Machine Learning with Python, you'll learn: Fundamental concepts and applications of machine learning Understand the various categories of machine learning algorithms. Some of the branches of Artificial Intelligence The basics of Python Concepts of Machine Learning using Python Python Machine Learning Applications Machine Learning Case Studies with Python The way that Python evolved throughout time And many more Throughout the recent years, artificial intelligence and machine learning have made some enormous, significant strides in terms of universal, global applicability. You'll discover the steps required to develop a successful machine-learning application using Python. Introduction to Machine Learning with Python is a step-by-step guide for any person who wants to start learning Artificial Intelligence - It will help you in preparing a solid foundation and learn any other high-level courses. Stay ahead and make a choice that will last... If You like to know more, scroll to the top and select " BUY NOW " buttom ★★★ Buy the Paperback version and get the Kindle Book versions for FREE ★★★

Title Practical Machine Learning with Python
Author Dipanjan Sarkar
Publisher Apress
Release 2017-12-22
Category Computers
Total Pages 530
ISBN 9781484232064
Language English, Spanish, and French
GET BOOK

Book Summary:

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

LEAVE A COMMENT