Download Hands-On Machine Learning for Algorithmic Trading Ebook, Epub, Textbook, quickly and easily or read onlineHands-On Machine Learning for Algorithmic Trading full books anytime and anywhere. Click GET BOOK button and get unlimited access by create free account.

Title Hands On Machine Learning for Algorithmic Trading
Author Stefan Jansen
Publisher Packt Publishing Ltd
Release 2018-12-31
Category Computers
Total Pages 684
ISBN 1789342716
Language English, Spanish, and French
GET BOOK

Book Summary:

With the help of this book, you'll build smart algorithmic models using machine learning algorithms covering tasks such as time series forecasting, backtesting, trade predictions, and more using easy-to-follow examples. By the end, you'll be able to adopt algorithmic trading in your own business and implement intelligent investigative strategies.

Title Hands On Algorithmic Trading with Python
Author Deepak Kanungo
Publisher
Release 2019
Category
Total Pages
ISBN
Language English, Spanish, and French
GET BOOK

Book Summary:

Artificial intelligence in general and specifically machine learning are becoming increasingly important tools for many industries and enterprises. But one business sector in particular has long since adopted and benefitted from these powerful computing paradigms: investment services. In fact, over the past decade, few other industries and sectors have experienced the frenetic pace of automation as that of the investment management industry, the direct result of algorithmic trading and machine learning technologies. Industry experts estimate that today as much as 70% of the daily trading volume in the United States equity markets is executed algorithmically-by computer programs following a set of predefined rules that span the entire trading process, from idea generation to execution and portfolio management. But although all algorithmic trading is executed by computers, the rules for generating trades are either designed by humans or discovered by machine learning algorithms from training data. Not surprisingly, the ability to create these algorithms, particularly using Python, is in high demand. In this video course, designed for those with a basic level of experience and expertise in trading, investing, and writing code in Python, you learn about the process and technological tools for developing algorithmic trading strategies. You'll examine the pros and cons of algorithmic trading as well as the first steps you'll need to take to "level the playing field" for retail equity investors. You'll explore some of the models that you can apply to formulate trading and investment strategies. You'll also learn about the Pandas library to import, analyze, and visualize data from market, fundamental, and alternative, no-cost sources that are available online. You'll even see how to prepare for competitions that can fund your algorithmic trading strategies. (Note that live trading is beyond the scope of the course.) What you'll learn-and how you can apply it By the end of this video course you'll understand: The advantages and disadvantages of algorithmic trading The different types of models used to generate trading and investment strategies The process and tools used for researching, designing, and developing them Pitfalls of backtesting algorithmic strategies Risk-adjusted metrics for evaluating their performance The paramount importance of risk management and position sizing And you'll be able to: Use the Pandas library to import, analyze, and vis...

Title Challenges and Applications of Data Analytics in Social Perspectives
Author Sathiyamoorthi, V.
Publisher IGI Global
Release 2020-12-04
Category Computers
Total Pages 324
ISBN 179982568X
Language English, Spanish, and French
GET BOOK

Book Summary:

With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Title Machine Learning for Algorithmic Trading
Author Stefan Jansen
Publisher Packt Publishing Ltd
Release 2020-07-31
Category Computers
Total Pages 820
ISBN 1839216786
Language English, Spanish, and French
GET BOOK

Book Summary:

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data Who this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Expert C by Vardan Grigoryan

Title Expert C
Author Vardan Grigoryan
Publisher Packt Publishing Ltd
Release 2020-04-10
Category Computers
Total Pages 606
ISBN 1838554769
Language English, Spanish, and French
GET BOOK

Book Summary:

Design and architect real-world scalable C++ applications by exploring advanced techniques in low-level programming, object-oriented programming (OOP), the Standard Template Library (STL), metaprogramming, and concurrency Key Features Design professional-grade, maintainable apps by learning advanced concepts such as functional programming, templates, and networking Apply design patterns and best practices to solve real-world problems Improve the performance of your projects by designing concurrent data structures and algorithms Book Description C++ has evolved over the years and the latest release – C++20 – is now available. Since C++11, C++ has been constantly enhancing the language feature set. With the new version, you’ll explore an array of features such as concepts, modules, ranges, and coroutines. This book will be your guide to learning the intricacies of the language, techniques, C++ tools, and the new features introduced in C++20, while also helping you apply these when building modern and resilient software. You’ll start by exploring the latest features of C++, and then move on to advanced techniques such as multithreading, concurrency, debugging, monitoring, and high-performance programming. The book will delve into object-oriented programming principles and the C++ Standard Template Library, and even show you how to create custom templates. After this, you’ll learn about different approaches such as test-driven development (TDD), behavior-driven development (BDD), and domain-driven design (DDD), before taking a look at the coding best practices and design patterns essential for building professional-grade applications. Toward the end of the book, you will gain useful insights into the recent C++ advancements in AI and machine learning. By the end of this C++ programming book, you’ll have gained expertise in real-world application development, including the process of designing complex software. What you will learn Understand memory management and low-level programming in C++ to write secure and stable applications Discover the latest C++20 features such as modules, concepts, ranges, and coroutines Understand debugging and testing techniques and reduce issues in your programs Design and implement GUI applications using Qt5 Use multithreading and concurrency to make your programs run faster Develop high-end games by using the object-oriented capabilities of C++ Explore AI and machine learning concepts with C++ Who this book is for This C++ book is for experienced C++ developers who are looking to take their knowledge to the next level and perfect their skills in building professional-grade applications.

Machine Trading by Ernest P. Chan

Title Machine Trading
Author Ernest P. Chan
Publisher John Wiley & Sons
Release 2017-02-06
Category Business & Economics
Total Pages 272
ISBN 1119219604
Language English, Spanish, and French
GET BOOK

Book Summary:

Dive into algo trading with step-by-step tutorials and expert insight Machine Trading is a practical guide to building your algorithmic trading business. Written by a recognized trader with major institution expertise, this book provides step-by-step instruction on quantitative trading and the latest technologies available even outside the Wall Street sphere. You'll discover the latest platforms that are becoming increasingly easy to use, gain access to new markets, and learn new quantitative strategies that are applicable to stocks, options, futures, currencies, and even bitcoins. The companion website provides downloadable software codes, and you'll learn to design your own proprietary tools using MATLAB. The author's experiences provide deep insight into both the business and human side of systematic trading and money management, and his evolution from proprietary trader to fund manager contains valuable lessons for investors at any level. Algorithmic trading is booming, and the theories, tools, technologies, and the markets themselves are evolving at a rapid pace. This book gets you up to speed, and walks you through the process of developing your own proprietary trading operation using the latest tools. Utilize the newer, easier algorithmic trading platforms Access markets previously unavailable to systematic traders Adopt new strategies for a variety of instruments Gain expert perspective into the human side of trading The strength of algorithmic trading is its versatility. It can be used in any strategy, including market-making, inter-market spreading, arbitrage, or pure speculation; decision-making and implementation can be augmented at any stage, or may operate completely automatically. Traders looking to step up their strategy need look no further than Machine Trading for clear instruction and expert solutions.

Advances in Financial Machine Learning by Marcos Lopez de Prado

Title Advances in Financial Machine Learning
Author Marcos Lopez de Prado
Publisher John Wiley & Sons
Release 2018-01-23
Category Business & Economics
Total Pages 400
ISBN 1119482119
Language English, Spanish, and French
GET BOOK

Book Summary:

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Hands On Machine Learning with C by Kirill Kolodiazhnyi

Title Hands On Machine Learning with C
Author Kirill Kolodiazhnyi
Publisher Packt Publishing Ltd
Release 2020-05-15
Category Computers
Total Pages 530
ISBN 1789952476
Language English, Spanish, and French
GET BOOK

Book Summary:

Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key Features Become familiar with data processing, performance measuring, and model selection using various C++ libraries Implement practical machine learning and deep learning techniques to build smart models Deploy machine learning models to work on mobile and embedded devices Book Description C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learn Explore how to load and preprocess various data types to suitable C++ data structures Employ key machine learning algorithms with various C++ libraries Understand the grid-search approach to find the best parameters for a machine learning model Implement an algorithm for filtering anomalies in user data using Gaussian distribution Improve collaborative filtering to deal with dynamic user preferences Use C++ libraries and APIs to manage model structures and parameters Implement a C++ program to solve image classification tasks with LeNet architecture Who this book is for You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

Title Hands On Unsupervised Learning Using Python
Author Ankur A. Patel
Publisher O'Reilly Media
Release 2019-02-21
Category Computers
Total Pages 362
ISBN 1492035610
Language English, Spanish, and French
GET BOOK

Book Summary:

Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

LEAVE A COMMENT