Download Predictive Analytics Ebook, Epub, Textbook, quickly and easily or read onlinePredictive Analytics full books anytime and anywhere. Click GET BOOK button and get unlimited access by create free account.

Predictive Analytics by Eric Siegel

Title Predictive Analytics
Author Eric Siegel
Publisher John Wiley & Sons
Release 2016-01-20
Category Business & Economics
Total Pages 332
ISBN 1119145678
Language English, Spanish, and French
GET BOOK

Book Summary:

Revised edition of the author's Predictive analytics, 2013.

Applying Predictive Analytics by Richard V. McCarthy

Title Applying Predictive Analytics
Author Richard V. McCarthy
Publisher Springer
Release 2019-06-01
Category Technology & Engineering
Total Pages 205
ISBN 3030140385
Language English, Spanish, and French
GET BOOK

Book Summary:

This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes.

Title Predictive Analytics and Data Mining
Author Vijay Kotu
Publisher Morgan Kaufmann
Release 2014-11-27
Category Computers
Total Pages 446
ISBN 0128016507
Language English, Spanish, and French
GET BOOK

Book Summary:

Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Title Mastering Predictive Analytics with R
Author James D. Miller
Publisher Packt Publishing Ltd
Release 2017-08-18
Category Computers
Total Pages 448
ISBN 1787124355
Language English, Spanish, and French
GET BOOK

Book Summary:

Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily Who This Book Is For Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure. What You Will Learn Master the steps involved in the predictive modeling process Grow your expertise in using R and its diverse range of packages Learn how to classify predictive models and distinguish which models are suitable for a particular problem Understand steps for tidying data and improving the performing metrics Recognize the assumptions, strengths, and weaknesses of a predictive model Understand how and why each predictive model works in R Select appropriate metrics to assess the performance of different types of predictive model Explore word embedding and recurrent neural networks in R Train models in R that can work on very large datasets In Detail R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R. Style and approach This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.

Title Applied Predictive Analytics
Author Dean Abbott
Publisher John Wiley & Sons
Release 2014-04-14
Category Computers
Total Pages 456
ISBN 1118727967
Language English, Spanish, and French
GET BOOK

Book Summary:

Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.

Title Modeling Techniques in Predictive Analytics with Python and R
Author Thomas W. Miller
Publisher FT Press
Release 2014-09-29
Category Computers
Total Pages 448
ISBN 013389214X
Language English, Spanish, and French
GET BOOK

Book Summary:

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Title Predictive Analytics for Human Resources
Author Jac Fitz-enz
Publisher John Wiley & Sons
Release 2014-07-28
Category Business & Economics
Total Pages 176
ISBN 1118893670
Language English, Spanish, and French
GET BOOK

Book Summary:

Create and run a human resource analytics project with confidence For any human resource professional that wants to harness the power of analytics, this essential resource answers the questions: "Where do I start?" and "What tools are available?" Predictive Analytics for Human Resources is designed to answer these and other vital questions. The book explains the basics of every business—the vision, the brand, and the culture, and shows how predictive analytics supports them. The authors put the focus on the fundamentals of predictability and include a framework of logical questions to help set up an analytic program or project, then follow up by offering a clear explanation of statistical applications. Predictive Analytics for Human Resources is a how-to guide filled with practical and targeted advice. The book starts with the basic idea of engaging in predictive analytics and walks through case simulations showing statistical examples. In addition, this important resource addresses the topics of internal coaching, mentoring, and sponsoring and includes information on how to recruit a sponsor. In the book, you'll find: A comprehensive guide to developing and implementing a human resource analytics project Illustrative examples that show how to go to market, develop a leadership model, and link it to financial targets through causal modeling Explanations of the ten steps required in building an analytics function How to add value through analysis of systems such as staffing, training, and retention For anyone who wants to launch an analytics project or program for HR, this complete guide provides the information and instruction to get started the right way.

Title Fundamentals of Machine Learning for Predictive Data Analytics
Author John D. Kelleher
Publisher MIT Press
Release 2015-07-24
Category Computers
Total Pages 624
ISBN 0262029448
Language English, Spanish, and French
GET BOOK

Book Summary:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Title Predictive Analytics Data Mining and Big Data
Author S. Finlay
Publisher Springer
Release 2014-07-01
Category Business & Economics
Total Pages 260
ISBN 1137379286
Language English, Spanish, and French
GET BOOK

Book Summary:

This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Predictive Analytics by Vijay Kumar

Title Predictive Analytics
Author Vijay Kumar
Publisher CRC Press
Release 2021-01-13
Category Business & Economics
Total Pages 274
ISBN 1000332861
Language English, Spanish, and French
GET BOOK

Book Summary:

Predictive analytics refers to making predictions about the future based on different parameters which are historical data, machine learning, and artificial intelligence. This book provides the most recent advances in the field along with case studies and real-world examples. It discusses predictive modeling and analytics in reliability engineering and introduces current achievements and applications of artificial intelligence, data mining, and other techniques in supply chain management. It covers applications to reliability engineering practice, presents numerous examples to illustrate the theoretical results, and considers and analyses case studies and real-word examples. The book is written for researchers and practitioners in the field of system reliability, quality, supply chain management, and logistics management. Students taking courses in these areas will also find this book of interest.

LEAVE A COMMENT